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Введение

В настоящей статье рассматриваются современные тенденции в ис‑
следованиях и результатах обнаружения дефектов изделий электрон‑
ной техники оптическим способом. Описаны перспективы машин‑
ного обучения и глубокого машинного обучения, синтеза данных 
о дефектах, трехмерного компьютерного зрения, Edge AI, где интел‑
лектуальные функции передаются непосредственно в камеру для бо‑
лее эффективной работы автоматизированных систем оптического 
обнаружения дефектов изделий электронной техники.

Обнаружение дефектов оптическим способом – процесс, при ко‑
тором автоматизированные системы контроля выявляют произ‑
водственные дефекты, используя в современных условиях искус‑
ственный интеллект (ИИ), что позволяет специалистам предприятий 
быстро определять первопричину дефекта, минимизируя время про‑
стоя и повышая выход годных.

В производстве изделий электронной техники (ИЭТ) обнаруже‑
ние дефектов становится критически важным, когда бракованная 
продукция поставляется потребителю как годная. Методы обнару‑
жения дефектов необходимы для поддержания качества, быстрого 
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В ЭК2–11 2025 г. описаны методы и способы настройки изображений для 
видимого диапазона обнаружения дефектов, методы измерения, классифи-
кации и формирования базы данных (БД) дефектов с помощью автомати-
зированного программно-аппаратного комплекса (АПАК) поиска дефектов 
изделий электронной техники (ИЭТ) с сохранением изображения дефекта 
в БД для дальнейшего применения, описано обнаружение дефектов полу-
проводниковых пластин в поляризованном свете, рассмотрена проверка 
качества порошковых материалов и микроструктур поверхностей, описан 
поиск дефектов микросварки с помощью электромагнитных устройств, 
представлены результаты проведенных исследований по поиску дефек-
тов путем анализа их ключевых особенностей с помощью современных 
алгоритмов компьютерного зрения на основе особых точек, и предложен 
новый эффективный комбинированный метод поиска дефектов, описаны 
новая технология поиска дефектов на основе многоракурсной структуры 
и поиск дефектов методом гомографии. Эксперименты подтвердили высо-
кую точность и эффективность в обнаружении дефектов всех трех методов 
на корпусах интегральных микросхем. Описано внедрение АПАК для обна-
ружения дефектов на металлокерамических корпусах типа 4, выполнены 
обзор, анализ, разработка и испытание технологии виртуальной реаль-
ности в АПАК обнаружения дефектов ИЭТ. В этой части статьи рассмотрены 
и обобщены тенденции 2025 г. в исследованиях и результатах обнаружения 
дефектов ИЭТ оптическим способом, перспективы машинного обучения 
и глубокого машинного обучения, трехмерного компьютерного зрения, 
синтеза данных о дефектах.

Разработка и внедрение АПАК 
для поиска дефектов изделий 
микроэлектроники с помощью 
искусственного интеллекта

Часть 11. Современные тенденции 
в методах автоматизированного 
оптического контроля изделий 
электронной техники
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и точного выявления бракованной продукции. Изучение и примене‑
ние передовых технологий обнаружения дефектов стало критически 
важным подходом к интеллектуальной модернизации и повыше‑
нию конкурентоспособности в радиоэлектронной промышленности. 
Своевременное обнаружение и классификация этих дефектов – ключ 
к поддержанию низкого уровня дефектности и сокращению отходов. 
Поскольку визуальные методы контроля силами технологов‑инспек‑
торов даже с помощью микроскопов часто не позволяют контро‑
лировать изделия сложной формы и обеспечить высокую точность, 
на смену им приходят передовые технологии, к которым относятся 
компьютерное зрение (КЗ) и глубокое машинное обучение (ГО).

Вслед за развитием методов ГО в последнее время число соответ‑
ствующих исследовательских работ и положительных результатов 
значительно увеличилось, что свидетельствует о том, что обнару‑
жение дефектов ИЭТ остается актуальной темой для исследований 
в области интеллектуального производства. В настоящее время су‑
ществующие исследования предоставляют ценную информацию для 
развития этой области, но все еще имеется потенциал для улучшения 
охвата методов и исследовательских систем.

Дефекты ИЭТ могут возникать на разных этапах производства, 
включая применение материалов, изготовление элементов ИЭТ.
Понимание способов выявления этих дефектов крайне важно для 
определения их первопричин и внедрения эффективных стратегий 
обнаружения и предотвращения, что является основной тенденцией 
2025 г. Дефекты могут негативно повлиять на эксплуатационные 
характеристики и безопасность ИЭТ при их эксплуатации в составе 
радиоэлектронной аппаратуры (РЭА).

В настоящее время наблюдается систематическое обобщение тех‑
нологий обнаружения дефектов с точки зрения структурной мо‑
дульности автоматизированных систем оптического обнаружения 
дефектов ИЭТ, процессов принятия решений по методам на основе 
анализа основных алгоритмов, проблемам и решениям, будущим 
тенденциям развития. Формируется четкая и эффективная структура 
классификации дефектов для улучшения читаемости и практической 
применимости результатов обеспечения качества ИЭТ посредством 
оптического контроля их поверхностей.

Модульное построение автоматизированных систем 
оптического обнаружения дефектов ИЭТ

Процесс автоматизированного обнаружения дефектов включает 
в себя использование передовых методов контроля и применяемо‑
сти оборудования для их выявления на поверхности ИЭТ и оценки 
проблемности, что требует сочетания знаний из таких разных дис‑
циплин, как оптика, обработка изображений, распознание образов 
и ИИ. Технология обнаружения дефектов позволяет автоматиче‑
ски выявлять, локализовать и классифицировать дефекты изделий 
путем сбора, обработки и анализа изображений поверхности ИЭТ 
[1]. Базовой тенденцией 2025 г. является более четкое определение 
модульности в структуре АПАК. Как видно из рис. 1, АПАК состоит 
из модуля получения изображений и модуля обработки изображе‑
ний. Такой подход к описанию АПАК в качестве примера представ‑
лен в [2].

Модуль получения изображений включает в себя такое оборудо‑
вание, как источники света, камеры в сочетании с телецентрическим 
объективом формирования изображений, предназначенные для по‑
лучения изображений высокого разрешения, фотографирования или 
съема изображений поверхностей изделий в динамике с последующей 
загрузкой полученных результатов в компьютерную систему.

Методы получения изображений делятся на статические и динами‑
ческие. Статическое получение позволяет избежать размытия и де‑
формации, вызванных движением ИЭТ или камер; оно может ис‑
пользоваться для обнаружения дефектов кристаллов на поверхности 
полупроводниковых пластин, определения дефектов на поверхности 
корпусов для микросхем на паллете и т. д.

Динамическое получение изображений требует использования 
камер с высокой частотой кадров и быстродействующих алгоритмов 
обработки изображений, либо для оптимизации без ущерба для эф‑
фективности производства ИЭТ должны применяться методы ком‑
пенсации движения и обработки изображений.

Динамическое получение изображений может использоваться для 
контроля формы и размеров многовыводных рамок для микросхем 
в процессах вырубки штампом или проверки качества ИЭТ на кон‑
вейерных лентах.

Для контроля дефектов серийно производимых ИЭТ, быстро дви‑
жущихся на конвейере, требуются прецизионный контроль (обеспе‑
чивающий высокую точность и стабильность показателей) в режиме 
реального времени и оперативная обратная связь по результатам 
контроля.

Для оптического обнаружения дефектов используются матричная 
(зонная) или линейная камеры.

Матричная камера считывает изображение по частям (зонам), в от‑
личие от обычных камер, которые считывают все изображение це‑
ликом. Это позволяет его обрабатывать быстрее и эффективнее, что 
особенно важно для задач, требующих высокой скорости при обна‑
ружении дефектов ИЭТ на производственных линиях.

Идеально подходит линейная камера, способная захватывать круп‑
ные объекты с высокой скоростью и разрешением в режиме реаль‑
ного времени, поскольку она отображает весь объект одной линией. 
Как показано на рис. 2, когда требуется непрерывное движение или 
высокое разрешение, линейная камера значительно превосходит ка‑
меру с зонным сканированием. Технология линейного сканирования 
подходит для задач, требующих получения больших изображений 
с высоким разрешением и высокой скоростью, например для непре‑
рывного контроля керамической ленты при изготовлении металло‑
керамических корпусов ИЭТ.

Высокоскоростная система обнаружения дефектов в режиме ре‑
ального времени на основе камер строится для получения детальных 
изображений поверхности ИЭТ.

Модуль обработки изображений использует МО или ГО для поис‑
ка дефектов на изображении поверхности ИЭТ.

МО работает с небольшими наборами данных, требует ручного 
извлечения признаков [3], проще в интерпретации и реализации, 
оптимально подходит для структурированных данных о дефектах 
ИЭТ.

Модуль
получения

изображения

Модуль обработки
изображений

Протоколы
и контроль

Рис. 1. Модульное представление АПАК

Матричная
камера

Линейная
камера

Рис. 2. Применение матричной и линейной камер 
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В настоящее время определены типы алгоритмов МО:
1)	 обучение с учителем: АПАК обучается на размеченных наборах, 

где входные и выходные данные четко определены;
2)	 обучение без учителя: выявляются закономерности или взаимос‑

вязи в данных без каких-либо предопределенных меток;
3)	 обучение с подтверждением: АПАК обучается, взаимодействуя 

со специалистами и получая «вознаграждения» или «штрафы» 
в зависимости от своих действий.

Кроме того, для обнаружения дефектов ИЭТ применяются: полу‑
контролируемое МО (комбинирует элементы обучения с учителем 
и без него, использует небольшое количество размеченных данных 
в сочетании с большим объемом неразмеченных данных) и другие 
типы МО, такие как активное обучение (позволяет АПАК самосто‑
ятельно запрашивать у пользователя наиболее важные данные для 
разметки, вместо того чтобы получать их в готовом виде). Выбор 
типа обучения зависит от параметров имеющихся данных и задач 
обнаружения дефектов.

ГО использует многослойные нейронные сети (НС) для автомати‑
ческого извлечения признаков из данных. Главные отличия от МО 
в том, что: АПАК с ГО находит закономерности в больших объе‑
мах первичных данных без предварительной ручной подготовки, 
в то время как МО требует, чтобы специалисты вручную выделяли 
признаки из данных.

МО и ГО стали в 2025 г. двумя основными технологиями ИИ, ко‑
торые направлены на то, чтобы АПАК учился на основе данных. 
Хотя оба подхода используются для прогнозирования и автомати‑
зации принятия решений, они различаются способами обработки 
данных и сложностью используемых технологий.

ГО использует НС с несколькими скрытыми слоями, которые по‑
зволяют автоматически изучать сложные закономерности на основе 
необработанных данных, таких как изображения поверхности ИЭТ. 
ГО автоматически изучает признаки на основе данных, эффектив‑
нее работает с большими наборами данных, требуются графические 
процессоры для обучения. Стоимость АПАК при этом значительно 
повышается, но скорость обработки данных и вероятность обнару‑
жения ошибок также значительно выше.

ГО включает в себя разные архитектуры НС, каждая из которых 
подходит для решения определенных задач. В АПАК для ГО исполь‑
зуются НС: автоэнкодеры, копирующие входные данные на выход, 
которые позволяют обнаруживать дефекты на изображении поверх‑
ности ИЭТ с помощью слоев; генеративные состязательные сети, 
состоящие из генератора и дискриминатора. Генератор создает новые 
данные, а дискриминатор отличает сгенерированные данные от фак‑
тических. Это позволяет генератору улучшать свою способность 
создавать близкие к реалистичным образы.

Ключевые особенности МО и ГО показаны в табл. 1.
МО необходимы структурированные данные для точного обна‑

ружения дефектов и принятия решений. Если данные не размечены 
и не организованы, технологии МО не могут их точно интерпрети‑
ровать, и это становится областью ГО.

Результаты обнаружения дефектов включают точный размер, тип 
и местоположение дефектов. Они обрабатываются АПАК и сумми‑

руются в протоколах проверки, которые обобщаются и анализиру‑
ются.

Современные тенденции анализа изображений

Анализ изображений АПАК позволяет выявлять дефекты на по‑
верхности изделий при их классификации и разметке.

Классификация дефектов – это процесс их систематизации по та‑
ким определенным признакам, как характер, причина возникнове‑
ния, степень влияния на работоспособность, возможность и целесоо‑
бразность устранения. Классификация применяется для определения 
приоритета исправления, оценки рисков и принятия решений об ис‑
пользовании ИЭТ.

Основные критерии признаков для классификации:
1)	 по степени влияния: критические приводят к полной неработо‑

способности ИЭТ или создают угрозу безопасности применения 
в РЭА; значительные: существенно влияют на функциональность, 
долговечность или внешний вид, но не делают ИЭТ полностью 
непригодным; незначительные: имеют несущественное влияние 
на эксплуатацию ИЭТ;

2)	 по причинам возникновения: конструктивные – ошибки в самой 
конструкции; производственные – связаны с нарушениями тех‑
нологического процесса при изготовлении; эксплуатационные – 
возникающие при эксплуатации;

3)	 по возможности устранения: устранимые – могут быть удале‑
ны с учетом технической и экономической целесообразности; 
неустранимые – исправление технически невозможно или эконо‑
мически невыгодно; такие ИЭТ считаются бракованными и не мо‑
гут использоваться по назначению.

С морфологической точки зрения образованы четыре типа распро‑
страненных поверхностных дефектов ИЭТ: дефекты типа усиления, 
дефекты типа отсутствия, дефекты типа искажения и дефекты типа 
замещения.

Дефекты типа усиления относятся к таким нежелательным частям 
или особенностям на поверхности ИЭТ, как грязь, посторонние ча‑
стицы, например микробрызги стекла на поверхности металлосте‑
клянных корпусов для микросхем и т. д.

Напротив, дефекты типа отсутствия относятся к ИЭТ, у которого 
отсутствуют определенные необходимые элементы или характе‑
ристики, что проявляется в отсутствующих контактах, маркировке 
и т. д.

Дефекты типа искажения относятся к ненормальным изменениям 
формы или размера ИЭТ, таким как перекосы, складки, деформации 
и т. д.

Дефекты типа замещения относятся к части ИЭТ, которая заменя‑
ется неправильным или несоответствующим материалом, что про‑
является в разнице цвета, ошибками в маркировке и т. д.

Кроме поверхностных современные АПАК позволяют распознать 
подповерхностные дефекты. Это трещины или пузыри с пустота‑
ми. Описание процессов обнаружения таких дефектов представлено 
в [4]. Подповерхностные дефекты скрыты под поверхностью и могут 
нарушить целостность ИЭТ. Их обнаружение с помощью определен‑
ных технологий освещения и алгоритмов выполняется АПАК [5].

Примечательно, что ИЭТ подвержены дефектам разных типов 
из-за их разного состава элементов и производственных процес‑
сов. Например, полупроводниковые пластины подвержены цара‑
пинам и истиранию в результате трения с неисправными (непра‑
вильно отрегулированными) устройствами производственного 
оборудования. Микросхемы в пластиковых корпусах, напротив, 
более подвержены дефектам, связанным с искажениями, к которым 
относятся коробление и деформация поверхностей, из-за ошибок 
в технологических процессах корпусирования. Разнообразие этих 
типов дефектов требует применения специфических алгоритмов 
при использовании в АПАК. В 2025 г. в части разработок АО «ЦКБ 
«Дейтон» такие алгоритмы реализованы и описаны программным 
кодом для АПАК [6].

Таблица 1. Ключевые особенности МО и ГО 

Наименование МО ГО 

Ввод исходной информации 
о дефектах ручное извлечение минимальное вмешательство 

специалиста

Метод контролируемое обучение автоэнкодеры и генеративные 
состязательные сети

Структура алгоритма модели взаимосвязанные нейроны

Структурированность данных интерпретируемость большие данные

Распределение вычислений централизованное локальное
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По мере совершенствования АПАК увеличивается разнообразие 
обнаруживаемых типов дефектов. Например, дефектами полупро‑
водниковых пластин являются кристаллические перекосы и нерегу‑
лярности легирования. Кристаллические перекосы относятся к несо‑
вершенствам в выравнивании структуры кристаллической решетки 
кремния, которые могут нарушить поток электронов, отрицательно 
влияя на производительность ИЭТ. Нерегулярности легирования 
связаны с неравномерным распределением примесей, намеренно 
добавленных в кремний для повышения проводимости. Эти дефек‑
ты могут приводить к локальным изменениям электрических ха‑
рактеристик, усложняя проектирование схем и снижая общую эф‑
фективность работы РЭА. Устранение дефектов этих типов имеет 
решающее значение для поддержания качества продукции. Этот рост 
приводит к необходимости более детальной классификации дефек‑
тов для повышения качества производства. Так, по внешнему виду 
и расположению на поверхности полупроводниковой пластины де‑
фекты классифицируются на: центральные, локальные, случайные 
и царапины. Эта классификация основана на системе категоризации 
Кемпфа [7], которая определяет дефекты на основе наблюдаемых 
структурных закономерностей и известных причин с дальнейшими 
уточнениями, основанными на инженерных идеях. Группирование 
изображения дефектов расширяет возможности по разработке це‑
левых стратегий устранения дефектов, которые улучшают качество 
изделий на протяжении всего производства.

Разметка данных представляет собой процесс аннотирования необра‑
ботанных данных, на которых учится АПАК. Обучение АПАК состоит 
в том, на что следует обращать внимание, как называются дефекты (или 
их элементы) и как они соотносятся друг с другом. При правильном 
подходе разметка становится основой надежных АПАК. Даже самые 
совершенные алгоритмы АПАК работают со сбоями, обучаясь на непо‑
следовательных, предвзятых или некачественных данных.

Проблема заключается не только в достаточном количестве дан‑
ных, но и в наличии правильных данных. Ручная разметка фактиче‑
ских данных требует больших затрат времени и средств, что создает 
серьезные препятствия для АПАК. В современной практике исполь‑
зуются синтетические данные, которые представляют собой эконо‑
мичную альтернативу, позволяющую сократить затраты на разметку 
данных. Синтетические данные становятся одним из самых мощных 
инструментов подготовки данных для АПАК.

Синтетические данные больше не являются экспериментальными. 
Прогнозируется, что к 2030 г. синтетические данные будут использо‑
ваться для обучения АПАК в большей мере, чем наборы фактических 
данных. Крупнейшие компании, занимающиеся разработкой ИИ, 
движутся в этом направлении. Изготовители ИЭТ могут использовать 
платформы синтетических данных для улучшения процессов конт
роля качества, генерируя разнообразные изображения дефектов, что 
значительно повышает точность их обнаружения и снижает затраты.

Созданы масштабируемые конвейеры синтетических данных для 
поддержки АПАК. Обучение на основе симуляции становится необ‑
ходимым для АПАК. Успешная работа АПАК требует огромных объ‑
емов высококачественных данных, сбор которых может оказаться 
сложным. Синтетические данные решают эту проблему, предостав‑
ляя масштабируемую альтернативу для обработки быстро меняю‑
щихся наборов данных. Экономическая эффективность синтети‑
ческих данных по сравнению с фактическими данными очевидна, 
поскольку снижаются текущие расходы, связанные со сбором, пере‑
смотром и соблюдением требований.

Синтетические данные обеспечивают практические решения про‑
блем, связанных с затратами, и не являются чем-то из ряда вон вы‑
ходящим; они становятся основной стратегией для АПАК.

Современные акценты на методах обнаружения 
дефектов

Для 2025 г. характерно фокусирование на предотвращении де‑
фектов посредством контроля процесса производства [8]. Этот про‑

активный подход сокращает отходы и затраты, гарантируя качество 
с самого начала. Раннее обнаружение дефектов экономит деньги 
и ресурсы, предотвращая выпуск бракованной продукции, что по‑
вышает эффективность современных производственных процессов.

ГО преобразило методы обнаружения и классификации дефектов 
в производстве, повысив точность при работе с большими набо‑
рами данных. Высокоэффективные алгоритмы и вычислительные 
системы, использующие методы ГО, помогают выявлять дефекты, 
ранее не обнаруживавшиеся технологами с помощью микроскопа, 
что улучшает контроль качества и способствует своевременному 
оповещению о производственных отклонениях. Модели ГО могут 
обучаться для совершенствования с течением времени на больших 
объемах данных, что снижает субъективность обнаружения и повы‑
шает общую производительность АПАК.

КЗ действует как электронный инспектор, выявляя микроскопи‑
ческие дефекты, невидимые человеческому глазу. Традиционно ви‑
зуальный контроль основывался на оценке человеком, но переход 
на передовые решения для КЗ значительно повысил точность и ста‑
бильность. КЗ повышает эффективность производства, снижает уро‑
вень дефектов на производственных операциях.

Отмечается переход от «правил» к «суждению». Современные 
АПАК заменяют жесткие инструкции интеллектуальным распозна‑
нием образов. Благодаря ГО АПАК изучают примеры качественных 
и некачественных ИЭТ для принятия независимых адаптивных ре‑
шений.

К ключевым усовершенствованиям относятся:
•	 снижение ложных срабатываний при естественных изменениях 

на поверхности ИЭТ (например, на предприятиях–изготовителях 
металлокерамических корпусов для микросхем периодически 
меняется печь, что сказывается на незначительных изменениях 
оттенков поверхности изделий);

•	 выявление сложных дефектов в материалах и покрытиях;
•	 повышение точности АПАК за счет обучения на реальных дан‑

ных;
•	 мгновенная адаптация без ручной перенастройки.

Это развитие делает АПАК ключевым фактором контроля каче‑
ства, превращая контроль из реактивной задачи в предиктивную.

Три основные технологии, которые определяют 
трансформацию оптического обнаружения  
дефектов в 2025 г.

Современный АПАК больше не ограничивается только выявлени‑
ем дефектов. АПАК направлен на обеспечение надежности на каж‑
дом этапе производства. Предприятия используют ИИ и ГО, 3D КЗ 
и периферийные вычисления для ускорения и повышения точности 
промышленного контроля качества.

Эти технологии составляют основу АПАК нового поколения, ко‑
торые обучаются на основе данных, адаптируются к изменениям 
и принимают решения в режиме реального времени на производ‑
ственной линии.

Три основные технологии, которые определяют трансформацию 
АПАК в 2025 г.:
1)	 ИИ и ГО в системе контроля качества применяются на произ‑

водственных линиях, где материалы и элементы ИЭТ сильно раз‑
личаются. АПАК обучается на примерах как годных, так и брако‑
ванных ИЭТ, распознавая закономерности, которые пропускают 
основанные на правилах традиционные системы оценки качества. 
АПК обеспечивает стабильные и надежные результаты контроля 
для ИЭТ разных видов.

К преимуществам относятся:
•	 выявление сложных или непредсказуемых дефектов с высокой 

точностью;
•	 сокращение количества ложных срабатываний, приводящее к по‑

вышению выхода годных;
•	 повышение стабильности работы производственных циклов;
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•	 улучшение автоматизированного оптического контроля с помо‑
щью самообучающихся моделей.

ИИ и ГО превращает оптический контроль в более интеллектуаль‑
ный инструмент принятия решений, а не просто в детектор дефек‑
тов.
2)	 3D КЗ помогает гарантировать соответствие ИЭТ всем физиче‑

ским характеристикам. Применение: 3D КЗ повышает точность 
размеров при промышленном контроле качества благодаря 
использованию датчиков, которые измеряют высоту, глубину 
и форму. АПАК измеряет контуры, уплотнения и узлы в режи‑
ме реального времени, помогая выявлять вмятины, зазоры или 
несоосности, невидимые для традиционного 2D КЗ. Это обеспе‑
чивает стабильно высокую эффективность КЗ для сложных гео‑
метрических форм. Примеры применения: измерение глубины 
вмятин, плоскостности и размеров элементов. Проверка покры‑
тий на однородность (золотое, серебряное и т. д.). Обнаружение 
деформаций.

3D КЗ существенно сокращает время проверки ИЭТ благодаря до‑
бавлению восприятия глубины.
3)	 Применение Edge AI (периферийный ИИ) преобразует визуаль‑

ный контроль, обрабатывая данные непосредственно на устрой‑
стве, а не отправляя их на сервер, или в информационную сеть 
предприятия. Этот локализованный интеллект, который позво‑
ляет АПАК анализировать изображения, обнаруживать дефекты 
и мгновенно принимать решения непосредственно в производ‑
ственном цехе.

Edge AI позволяет передавать интеллектуальные функции непо‑
средственно в камеру для более эффективного автоматизирован‑
ного КЗ. Edge AI – технология, при которой алгоритмы ИИ выпол‑
няются локально на устройствах АПАК. Это децентрализованная 
вычислительная парадигма, Edge AI позволяет обрабатывать данные 
непосредственно у источника их генерации, что обеспечивает более 
быструю обработку, снижает задержки и повышает безопасность 
и конфиденциальность данных, поскольку они не передаются через 
информационные сети.

Edge AI идеально подходит для высокоскоростных линий контро‑
ля, требующих реагирования в режиме реального времени и мини‑
мальных задержек.

Преимущества: обеспечивает работу АПАК в режиме реально‑
го времени без задержек в сети. Снижает затраты на оборудование 
и передачу данных. Поддержка непрерывной инспекции даже при 
отсутствии подключения к информационной сети предприятия. 
Благодаря встроенным в устройства АПАК интеллектуальным функ‑
циям Edge AI делает инспекцию более быстрой, эффективной и на‑
дежной.

Выводы

Современные тенденции развития методов обнаружения дефектов 
в 2025 г. для АПАК обобщены и представлены в табл. 2.

При описанном выше развитии АПАК в настоящее время имеет 
ряд ограничений, которые необходимо устранять в будущем. Это 
актуальные задачи для разрешения ограничений.

Первым основным ограничением является пропускная способ‑
ность: АПАК оптимизирован для высокоскоростной инспекции, 
способной анализировать ИЭТ за секунды или минуты, тогда как 
растущее число дефектов требует значительно большего времени 
инспекции.

Во‑вторых, разрешение современного АПАК ограничивает об‑
наружение дефектов относительно крупными дефектами поверх‑
ности, а нано- или субмикронные дефекты, особенно актуальные 
для современных ИЭТ с размерами менее 28 нм, остаются пока вне 
досягаемости.

В‑третьих, в АПАК должны применяться такие средства контроля 
окружающей среды, как гашение вибраций, фильтрация частиц и со‑

вместимость с чистыми помещениями, которые необходимы на про‑
изводственных линиях.

В‑четвертых, АПАК должны далее интегрироваться в сети MES 
(Manufacturing Execution System) [9] для отслеживания данных в ре‑
альном времени и быть совместимыми с промышленными контура‑
ми обратной связи.

По мере развития технологий разработки и изготовления ИЭТ по‑
требность в эффективных и масштабируемых АПАК будет только 
расти. На текущий момент АПАК представляет собой многообещаю‑
щий план решения этих задач, открывая путь будущим инновациям 
в области автоматизированного контроля, которые могут улучшить 
результаты производства и обеспечить необходимую надежность 
ИЭТ. Это актуальные перспективные задачи для машинного обуче‑
ния и глубокого машинного обучения, синтеза данных о дефектах, 
трехмерного компьютерного зрения.

Благодаря постоянному совершенствованию и интеграции класси‑
фикации дефектов на основе МО и ГО АПАК устанавливает новые 
стандарты обнаружения дефектов ИЭТ, что в конечном итоге будет 
способствовать повышению эффективности и надежности отече‑
ственной цепочки производства радиоэлектронной продукции.

При этом необходимо перечитать и переосмыслить стандарты 
советского времени, а также использовать результаты зарубежного 
опыта в этой области [10–14].                                                                          
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